Emacs Configuration

Jed Northridge

September 4, 2013

Contents
1 Overview
1.1 Background: Literate Programming in Emacs
1.2 An Emacs Configuration
2 General
2.1 Package Repository oo
22 PATH
2.3 UTF-8
2.4 Start Server
25 SavePlace
2.6 Appearance
3 Personal Information
4 Key Bindings
4.1 See Occurrences while Searching
4.2 Running Methods oo oo
4.3 Text Size
44 GotoLine
4.5 Magit
46 MacOS’s “Command”
4.7 Movement
5 Behaviors
5.1 Miscellaneous
5.2 Whitespace Cleanup
53 Yesor No?7.
54 Autofill

5.5 Display Column Numbers when Programming 12

5.6 Highlight Current Line when Programming 12
5.7 Use instead of lambda, 12
6 Modes and Packages 13
6.1 General Package Listing 13
6.2 Ruby Packages 15
6.3 Magit 17
6.4 wyasnippet 18
6.5 org-mode 19
7 Various and Sundry 20
7.1 Jim Weirich’s eval-buffer 0. 20
8 Appendix A: Installation Details 21
8.1 Emacs Installation L. 21
8.2 Using emacs-setupo 22
9 Appendix B: Babel and the Config 23
9.1 Composite File00 23
9.2 Component Files L. 23
9.3 Concatenation L 24
9.4 Extractingelispo 25

1 Overview

I use a simple mechanism for breaking down a single emacs configuration
across several component files. Any one of these component files is written
in a format that enables that file to simultaneously be more than one thing.
Each file surely contains elisp that is used to configure emacs, but that same
file also contains a prose explanation behind the motivation and impact of
the associated elisp. The same mechanism combines these component pieces
to form an overall configuration, ultimately within a single file an in pure
elisp, that emacs is capable of interpreting. In the end, the elisp from each
file provides a discrete section of the total, generated configuration, just as
the prose explanation from each file comes to represent a section within this
document.

The value of this mechanism draws from the belief that complexity is
reduced when each file can bear a single responsibility for describing one
smaller part of a large configuration. This follows from the similar expecta-
tion that any one chapter within a larger document can rightly be expected
to describe a self-contained idea.

The notion of first creating a prose explanation of how “code” works
and then embedding that same code within that explanation is known as
Literate Programming. This document describes two such systems. The
first, and larger of the two, is a literately programmed emacs configuration.
The second is a description of how literate programming is achieved within
emacs and then meaningfully used to configure emacs.

1.1 Background: Literate Programming in Emacs

Emacs provides support for literate programming most directly through org-
mode, and, within org-mode, babel. When practicing literate programming
in this style, you author org-mode documents as normal and you addition-
ally embed source code within these documents. Org-mode gives you strong
support for authoring a document of any type: you can export to various
formats, structure documents with semantic headings, generate a table of
contents, enjoy hyperlink syntax, and more. In addition to basic org-mode
functionality, babel then allows you to include source code within these doc-
uments. Source code in this context enjoys the same support that emacs
provides for normal editing. You can choose any single language or a mix of
languages and you work in the mode of the language.

Embedded source code and its easy extraction is the foundation that en-
ables literate programming. Briefly, as you consider programming “a thing,”
you are given all of the tools you need to write a stand-alone document about
that “thing.” You are free to layout and follow a narrative that you see fit.
This document is my prose explanation of my emacs configuration.

1.2 An Emacs Configuration

When Emacs is started, it normally tries to load a Lisp program from an
initialization file, or init file for short. The mechanism I use for managing my
configuration is centered around two elisp files. A smaller initialization file,
init.el, lives in ~/.emacs.d, a location that is well known to emacs and
this file is read on start-up. init.el presumes that it will be able to load a
much larger elisp file located at ~/emacs.d/emacs-setup/emacs-setup.el.

These two files, init.el and emacs-setup.el, are extracted from source

http://en.wikipedia.org/wiki/Literate_programming
http://orgmode.org/
http://orgmode.org/
http://orgmode.org/worg/org-contrib/babel/
http://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File.html
http://www.gnu.org/software/emacs/manual/html_node/emacs/Init-File.html

code blocks within .org files using babel. Appendix A contains init.el in
its entirety. The contents of emac-setup.el are spread across the remainder
of the .org files and can be constructed by concatenating the extract results
of all files.

In summary, I use Org-mode and .org files to serve two purposes:

e .org files contain documentation of my configuration. This documen-
tation can be viewed on Github or translated into another format such
as WTEX or HTML.

e .org files contain embedded elisp behind the same configuration. Babel,
a feature of Org-mode, can parse a .org file and extract the associated
elisp.

Appendix A details how I install and setup emacs. It also contains in-
formation about how init.el and the start up process works. Appendix B
defines a process that is capable of creating emacs-setup.el from distinct
.org files.

When it comes to elisp, functions and variables associated with my emacs
setup will begin with jedcn-es. The first variable we define sets the expeca-
tion that the directory emacs-setup/ can be placed (or linked to) underneath
~/.emacs.d:

(setq jedcn-es/dir (concat
user-emacs-directory
"emacs-setup"))

2 General

2.1 Package Repository

Extensions for emacs are known as “packages,” and emacs has a built in pack-
age management system. Emacs lisp packages are stored in archives (elpas)
and, initially, emacs knows about a single such archive: http://elpa.gnu.org.
This archive has approximately 50 packages. However, there are additional
elpas out there, and I have had good luck finding up-to-date packages in
http://melpa.milkbox.net/.

That said, each time I open up emacs I make sure that the package
management system is initialized before I configure it to use melpa:

http://elpa.gnu.org
http://melpa.milkbox.net/

(package-initialize)

(add-to-list ’package-archives
>("melpa" . "http://melpa.milkbox.net/packages/") t)

My observation is that packages cannot be installed until a repository
is contacted, at least once, and an overview of the contents are downloaded
and cached locally.

The following elisp will run package-list-packages if ~/.emacs.d/elpa
does not exist, and is rooted in the belief that the first time you run
package-list-packages the contents of the archive are cached within
~/.emacs.d/elpa.

(unless
(file-directory-p "~/.emacs.d/elpa")
(package-list-packages))

I am interested in ensuring that the elpa cache has been created so that I
can programatically install packages. I first read about this in Sacha Chua’s
excellent blog post on her configuration: Literate programming and my
Emacs configuration file. She defines a function (copied below) that will
install the package if it is not present:

(defun sacha/package-install (package &optional repository)
"Install PACKAGE if it has not yet been installed.
If REPOSITORY is specified, use that."
(unless (package-installed-p package)
(let ((package-archives (if repository
(list (assoc repository package-archives))
package-archives)))
(package-install package))))

In combination, these facilities are the foundation of my package manage-
ment strategy: initialize the subsystem, configure the repositories, and then
define a means to programatically install missing packages. Doing this early
on in my initialization process means that code which follows can state, “I
expect to have package XYZ,” by saying, (sacha/package-install "XYZ")
and then presume that XYZ is present.

http://sachachua.com/blog/2012/06/literate-programming-emacs-configuration-file/
http://sachachua.com/blog/2012/06/literate-programming-emacs-configuration-file/

2.2 PATH

Emacs can run shell commands on your behalf. When it does this, it needs
to know about the equivalent of your PATH so it can find commands.

I am not sure how this works. There is something that is an environment
variabled named PATH that is reachable via (getenv "PATH") and there is
something else that is a elisp variable named exec-path.

Rather than interact with my shell and have Emacs learn values from a
$PATH proper, I am explicit about setting both:

(setq jedcn-env-path "/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/usr/texbin")

(defun jedcn-sync-env-path-and-exec-path (desired-path)
"Sets exec-path and env ’PATH’ based on DESIRED-PATH"
(setenv "PATH" desired-path)

(setq exec-path (split-string desired-path ":")))

(jedcn-sync-env-path-and-exec-path jedcn-env-path)

2.3 UTF-8

I picked this up from Magnars in his sane-defaults.el.

(setq locale-coding-system ’utf-8)
(set-terminal-coding-system ’utf-8)
(set-keyboard-coding-system ’utf-38)
(set-selection-coding-system ’utf-8)
(prefer-coding-system ’utf-8)

2.4 Start Server

Emacs is often run for hours (or days, or weeks) at a time. One of the
benefits of such a long-lived process is that you can build a small tool, like
emacsclient that can connect to a running emacs and request that some-
thing be edited. For example, you can tell git that it should use emacsclient
whenever it needs to edit something:

git config --global core.editor /usr/local/bin/emacsclient
That said, here’s the elisp that starts up an emacs server:

(server-start)

https://github.com/magnars/.emacs.d/blob/master/sane-defaults.el

2.5 Save Place
I got this one from Magnars: init.el-03.

(require ’saveplace)
(setq-default save-place t)
(setq save-place-file (expand-file-name ".places" user-emacs-directory))

2.6 Appearance

2.6.1 Color Theme
(sacha/package-install ’zenburn-theme)
(load-theme ’zenburn t)

2.6.2 Font

I like a bigger font (say, 18) and I vary between “Monaco-18" or “Menlo-18”.

(set-face-attribute ’default nil :font "Menlo-18")

3 Personal Information

(setq user-full-name "Jed Northridge"
user-mail-address "northridge@gmail.com")

4 Key Bindings

My main inspiration for keybindings have come from ESK and from Magnars.
Documenting (and configuring) keybindings is somewhat strange. These
things appear out of no where, and do not always follow an obvious order.

4.1 See Occurrences while Searching

If you are searching for something, and you press C-o, you can see all of
the occurrences of that something within the file. Once that Occur window
comes up, you can press e to start editing. You can press C-¢ C-c¢ to get
out of it.

(define-key isearch-mode-map (kbd "C-o")
(lambda () (interactive)
(let ((case-fold-search isearch-case-fold-search))
(occur (if isearch-regexp isearch-string (regexp-quote isearch-string))))))

http://whattheemacsd.com/init.el-03.html
https://github.com/technomancy/emacs-starter-kit/blob/v2/modules/starter-kit-bindings.el
https://github.com/magnars/.emacs.d/blob/master/key-bindings.el

4.2 Running Methods

When it comes to running methods explicitly, I always use C-x C-m.
I picked this up from Steve Yegge’s Effective Emacs. He says use
execute-extended-command, but I always use smex.

(global-set-key "\C-x\C-m" ’smex)

4.3 Text Size

Making text larger or smaller with ease is something I use every day, several
times a day. This happens most commonly when I am showing someone
something in emacs (say, pairing or running a meeting), but also when T am
at home and do not have my glasses. These particular keybindings are all
about the + and the -.

(define-key global-map (kbd "C-+") ’text-scale-increase)
(define-key global-map (kbd "C--") ’text-scale-decrease)

4.4 Goto Line

The following makes it so that when I press C-x g I can expect to be
prompted to enter a line number to jump to it.

(global-set-key (kbd "C-x g") ’goto-line)

And the elisp below makes it so that whatever goto-line was bound to is
now bound to a new function: goto-line-with-feedback.

In turn, goto-line-with-feedback modifies the buffer you are working in to
show line numbers but only when you are actively looking to pick a number.

The point of showing line numbers is to give you an idea of where you
will end up.

The point of only showing them while going to a line is to keep the
screen free of distractions (line numbers) unless it is helpful.

This comes from this post within “what the emacs.d.”

(global-set-key [remap goto-line] ’goto-line-with-feedback)

(defun goto-line-with-feedback ()
"Show line numbers temporarily, while prompting for the line number input"
(interactive)
(unwind-protect

https://sites.google.com/site/steveyegge2/effective-emacs
http://whattheemacsd.com/key-bindings.el-01.html

(progn
(linum-mode 1)
(goto-line (read-number "Goto line: ")))
(linum-mode -1)))

4.5 Magit
I like to think “C-x m”agit.

(global-set-key (kbd "C-x m") ’magit-status)

4.6 MacOS’s “Command”

I think keys called ‘super’ and ‘hyper’ used to appear on the keyboards of
fabled ‘Lisp Machines,” as described in this ErgoEmacs post about Super
and Hyper Keys. I may take advantage of these some day, but for now I am
happy to have both the ‘alt/option’ key and the ‘command’ key on my Mac
do the same thing: meta.

Given the default setup of my brew installed emacs, the following change
makes it so that “command does meta”

If I am back this way in the future again, I’d like to remind myself to con-
sider the following variables: mac-option-modifier, mac-command-modifier,
and ns-function-modifer.

(setq mac-command-modifier ’meta)

4.7 Movement

I rely on standard emacs commands to move around, with the following
enhancements:

4.7.1 Using shift makes standard movement 5x faster

This comes from Magnars in this post of whattheemacsd.com.

(global-set-key (kbd "C-S-n")
(lambda ()
(interactive)
(ignore-errors (next-line 5))))

(global-set-key (kbd "C-S-p")
(lambda ()

http://ergoemacs.org/emacs/emacs_hyper_super_keys.html
http://ergoemacs.org/emacs/emacs_hyper_super_keys.html
http://whattheemacsd.com/key-bindings.el-02.html

(interactive)
(ignore-errors (previous-line 5))))

(global-set-key (kbd "C-S-f")
(lambda ()
(interactive)
(ignore-errors (forward-char 5))))

(global-set-key (kbd "C-S-b")
(lambda ()
(interactive)
(ignore-errors (backward-char 5))))

4.7.2 Move current line up or down

This matches what Magnars says in this post, except I also use META.

(defun move-line-down ()
(interactive)
(let ((col (current-column)))
(save-excursion
(forward-1line)
(transpose-lines 1))
(forward-line)
(move-to-column col)))

(defun move-line-up ()
(interactive)
(let ((col (current-column)))
(save-excursion
(forward-line)
(transpose-lines -1))
(move-to-column col)))
(global-set-key (kbd "<C-M-S-down>") ’move-line-down)
(global-set-key (kbd "<C-M-S-up>") ’move-line-up)

5 Behaviors

be-hav-ior bihvyr Noun

10

http://whattheemacsd.com/editing-defuns.el-02.html

e The way in which one acts or conducts oneself, esp. toward others:
“his insulting behavior towards me”.

e The way in which an animal or person acts in response to a particular
situation or stimulus: “the feeding behavior of predators”.

5.1 Miscellaneous

Do not “ding” all of the time, and instead flash the screen. Do not show the
Emacs “splash” screen.

(setq visible-bell t
inhibit-startup-message t)

5.2 Whitespace Cleanup

The following creates a function that cleans up whitespace, and then adds
a hook that makes this happen each time you save. It comes from a post
within “what the emacs.d,” specifically titled buffer defuns.

(defun cleanup-buffer-safe ()
"Perform a bunch of safe operations on the whitespace content of a buffer."
(interactive)
(untabify (point-min) (point-max))
(delete-trailing-whitespace)
(set-buffer-file-coding-system ’utf-8))

(add-hook ’before-save-hook ’cleanup-buffer-safe)

5.3 Yes or No?

Emacs often asks you to type “yes or no” to proceed. As an example, consider
when you are in magit, and you press “k” to kill off a hunk. I am happy to
have a confirmation before something is deleted, but I prefer to just press
“y” instead of “y-e-s-<RETURN>"

(defalias ’yes-or-no-p ’y-or-n-p)

11

http://whattheemacsd.com/buffer-defuns.el-01.html

5.4 Autofill

By observation alone, auto-fill-mode makes it so that words wrap around
the screen by inserting a new line once you go past a certain spot. I want to
auto-fill if I am working on text. When I am programming, I only want to
auto-fill if I am writing a comment.

Both of these come from technomancy in v2 of the emacs-starter-kit.

(defun esk-local-comment-auto-fill ()
(set (make-local-variable ’comment-auto-fill-only-comments) t)
(auto-fill-mode t))

(add-hook ’prog-mode-hook ’esk-local-comment-auto-fill)

(add-hook ’text-mode-hook ’turn-on-auto-fill)

5.5 Display Column Numbers when Programming

Show column numbers when programming. This comes from technomancy
in v2 of the emacs-starter-kit.

(defun esk-local-column-number-mode ()
(make-local-variable ’column-number-mode)
(column-number-mode t))

(add-hook ’prog-mode-hook ’esk-local-column-number-mode)

5.6 Highlight Current Line when Programming

Highlight the current line. This comes from technomancy in v2 of the emacs-
starter-kit.

(defun esk-turn-on-hl-line-mode ()
(when (> (display-color-cells) 8)
(hl-line-mode t)))
(add-hook ’prog-mode-hook ’esk-turn-on-hl-line-mode)
5.7 Use instead of lambda

If you see “lambda” replace it with a . This comes from technomancy in v2
of the emacs-starter-kit.

12

https://github.com/technomancy/emacs-starter-kit
https://github.com/technomancy/emacs-starter-kit
https://github.com/technomancy/emacs-starter-kit
https://github.com/technomancy/emacs-starter-kit
https://github.com/technomancy/emacs-starter-kit

(defun esk-pretty-lambdas ()
(font-lock-add-keywords
nil <(("(?\\(lambda\\>\\)"
(0 (progn (compose-region (match-beginning 1) (match-end 1)
, (make-char ’greek-iso08859-7 107))
nil))))))

(add-hook ’prog-mode-hook ’esk-pretty-lambdas)

6 Modes and Packages

Modes bring significant functionality into Emacs. These are the modes (and
any associated configuration) that I use.

As T understand it, modes are delivered via packages. You can browse
available packages by typing M-x package-list-packages. As you move
around (just like a regular buffer), if you see something you like you can
press i and the package on the same line as your cursor will be marked
for an upcoming installation. When you are ready, press ‘x’ to install each
package that has been marked in this way.

If I like a package, I'll revisit this file and formally add it to the list of
packages I use. In this file, my intent is to provide notes about a mode, why
I am using it, what I am doing with it, etc. Further, I want to hook the list
of packages that I am using into a system by which they are automatically
installed. I am looking to do this to make sure that I can recreate my emacs
installation if T move to a new computer. The means by which packages are
automatically installed is with a function named sacha/package-install.
This was defined previously.

6.1 General Package Listing
6.1.1 better-defaults

I started with Emacs Starter Kit, and am following its progression from
vl to v2 and, now, v3. In v3 the esk becomes prose only, and identifies
better-defaults as a single package with “universal appeal.”

(sacha/package-install ’better-defaults)

13

6.1.2 smex

When you want to run a command (say, via M-x) smex provides instant
feedback by displaying available commands and remembering ones you have
recently invoked.

(sacha/package-install ’smex)

(setq smex-save-file (concat user-emacs-directory '".smex-items"))
(smex-initialize)

(global-set-key (kbd "M-x") ’smex)

6.1.3 markdown-mode

I write in Markdown all the time, and sometimes I use the “compilation”
facility of this mode.

If you do start using the compilation aspect, you'll need a command line
“markdown” to execute.

I got markdown with brew install markdown.

My notes indicate that:

You can change the markdown executable, or read more about the mode,
here: http://jblevins.org/projects/markdown-mode/

Also, Highlights:

e C-c C-c p: Run markdown on buffer contents. Open result in browser.

I started using markdown-mode+ recently, and I did so after doing a
bunch of work to get pandoc installed and working with Emacs.

(sacha/package-install ’markdown-mode)
(sacha/package-install ’markdown-mode+)

(add-to-list ’auto-mode-alist ’("\\.md$" . markdown-mode))
6.1.4 puppet-mode

(sacha/package-install ’puppet-mode)

(add-to-list ’auto-mode-alist ’("\\.pp$" . puppet-mode))
6.1.5 haml-mode

(sacha/package-install ’haml-mode)

14

https://github.com/nonsequitur/smex
http://jblevins.org/projects/markdown-mode/

6.1.6 yaml-mode

(sacha/package-install ’yaml-mode)
(add-to-1list ’auto-mode-alist ’("\\.yml$" . yaml-mode))

6.1.7 coffee-mode

(sacha/package-install ’coffee-mode)

6.2 Ruby Packages

I really enjoy writing ruby.

At a high level, my MacOS has RVM installed from http://rvm.io.

Then, my emacs uses a package named rvm that understands how
http://rvm.io works, and can direct emacs to use any of the various rubies
that rvin provides.

I explicitly use the default ruby from RVM, but Emacs also updates the
ruby I'm using each time I start editing a file in ruby-mode. I think this
works by looking at the location of the file I'm editing, looking “up” to find
the associated .rvimrc or .ruby-version, and then activating it.

With all of that said, my main flow is to run rspec and cucumber from
within emacs. This capability is provided by feature-mode and rspec-mode.

The main key bindings I use are:

e C-c , v

Run rspec or cucumber against the file I'm editing

e C-c , s

Run rspec or cucumber against the single line of the spec or feature
I'm editing.

6.2.1 rvm
(sacha/package-install ’rvm)

For emacs, on a MacOS, I believe the following configures my setup so
that T'll use the default ruby provided by RVM when I need ruby.

(rvm-use-default)

15

http://rvm.io
http://rvm.io

I was reading a blog post by Avdi Grimm about how he was using RVM
the other day, and that’s where I picked up the following helpful snippet that
works with the emacs rvm subsystem to activate the correct version of ruby
each time you open a ruby-based file:

(add-hook ’ruby-mode-hook
(lambda () (rvm-activate-corresponding-ruby)))

6.2.2 feature-mode

I don’t often write Gherkin at work, but I do try to use Cucumber whenever
I get the chance on side projects. So far I've been using this mode mainly
for syntax highlighting.

(sacha/package-install ’feature-mode)

6.2.3 rspec-mode

I love rspec.
(sacha/package-install ’rspec-mode)

I also have been using ZSH, and when I was getting rspec-mode up and
running a few months ago, I ran into trouble. Thankfully, the author of
rspec mode had a solution for using rspec mode with ZSH.

(defadvice rspec-compile (around rspec-compile-around)
"Use BASH shell for running the specs because of ZSH issues."
(let ((shell-file-name "/bin/bash"))
ad-do-it))
(ad-activate ’rspec-compile)

6.2.4 ruby-mode

For now, the main thing I do is turn on ruby-mode when I'm editing well
known file types:

(add-to-list ’auto-mode-alist ’("\\.rake$" . ruby-mode))
(add-to-1list ’auto-mode-alist ’("\\.gemspec$" . ruby-mode))
(add-to-list ’auto-mode-alist ’("\\.ru$" . ruby-mode))
(add-to-list ’auto-mode-alist ’("Rakefile$" . ruby-mode))
(add-to-list ’auto-mode-alist ’("Gemfile$" . ruby-mode))

16

http://devblog.avdi.org/2011/10/11/rvm-el-and-inf-ruby-emacs-reboot-14/
https://github.com/pezra/rspec-mode

(add-to-list ’auto-mode-alist ’("Capfile$" . ruby-mode))
(add-to-list ’auto-mode-alist ’("Vagrantfile$" . ruby-mode))
(add-to-list ’auto-mode-alist ’("\\.thor$" . ruby-mode))
(add-to-list ’auto-mode-alist ’("Thorfile$" . ruby-mode))
(add-to-list ’auto-mode-alist ’("Guardfile" . ruby-mode))

6.2.5 ruby-electric

This minor mode automatically inserts a right brace when you enter a left
brace, or an “end” when you define a def.

(sacha/package-install ’ruby-electric)

6.3 Magit

I love magit.
Beyond cosmetics, here are two great blog posts about magit: Setup
Magit #1 and Setup Magit #2. The main points are:

o Give Magit full screen when you start it.
e Setup Magit so that pressing “q” gets rid of full screen.

e Setup Magit so that pressing “W” toggles paying attention to whites-
pace.

I happen to have emacsclient installed in two places, one at /usr/bin
and another at /usr/local/bin. The one at /usr/bin cannot find my emacs
server and this causes Magit to freeze whenever I try to commit. This is why
I explicitly set magit-emacsclient-executable.

(sacha/package-install ’magit)

(require ’magit)

(defadvice magit-status (around magit-fullscreen activate)
(window-configuration-to-register :magit-fullscreen)
ad-do-it

(delete-other-windows))

(defun magit-quit-session ()
"Restores the previous window configuration and kills the magit buffer"

17

http://whattheemacsd.com/setup-magit.el-01.html
http://whattheemacsd.com/setup-magit.el-01.html
http://whattheemacsd.com/setup-magit.el-02.html

(interactive)
(kill-buffer)
(jump-to-register :magit-fullscreen))

(define-key magit-status-mode-map (kbd "q") ’magit-quit-session)

(defun magit-toggle-whitespace ()
(interactive)
(if (member "-w" magit-diff-options)
(magit-dont-ignore-whitespace)
(magit-ignore-whitespace)))

(defun magit-ignore-whitespace ()
(interactive)
(add-to-list ’magit-diff-options "-w'")
(magit-refresh))

(defun magit-dont-ignore-whitespace ()
(interactive)
(setq magit-diff-options (remove "-w" magit-diff-options))
(magit-refresh))

(define-key magit-status-mode-map (kbd "W") ’magit-toggle-whitespace)
(setq magit-emacsclient-executable "/usr/local/bin/emacsclient")

6.4 yasnippet

My favorite snippet to use is dbg, which I found in Jim Weirich’s emacs setup
here.

(sacha/package-install ’yasnippet)
(require ’yasnippet)

(setq yas-snippet-dirs (concat jedcn-es/dir "/snippets"))

When I was setting up yasnippet, I saw the following in the official doc-
umentation:

(yas-global-mode 1)

18

https://github.com/jimweirich/emacs-setup/blob/master/snippets/text-mode/ruby-mode/dbg

6.5 org-mode
OrgMode is a wonderful thing.

6.5.1 Defaults

When I open a .org file, I like to see all of the headlines but none of the text:
(setq org-startup-folded ’content)
Hiding the stars looks cleaner to me:

(setq org-hide-leading-stars ’hidestars)

6.5.2 Code Blocks

These emacs configuration files (.org, .el) use org’s “code blocks” extensively,
and the following has Emacs pay attention to the type of code within the
blocks.

(setq org-src-fontify-natively t)

Editing Code Blocks With your cursor over one of these code blocks you
can type C-c¢ © and a new buffer will open for editing just that content.

Executing Code Blocks With your cursor over one of these code blocks
you can type C-c C-c and, if the code block is one of the languages that has
been configured to be run, the block will be executed and the results printed
nearby.

By default, only emacs-lisp is configured to be executed. The following
block makes it so that ruby is too.

Here’s the documentation for this: babel/languages.

(org-babel-do-load-languages
’org-babel-load-languages
’((emacs-lisp . t)

(ruby . t)))

19

http://orgmode.org/worg/org-contrib/babel/languages.html

7 Various and Sundry

7.1 Jim Weirich’s eval-buffer

I saw Jim Weirich give a great talk at one of the keynotes of Ruby Conf
2012. The way he used buffer evaluation was just awesome!

His setup (which I think is described below) allows him to consistently
show you one piece of code and then pair that code up with the output that
comes from executing it.

Unlike using an inferior-ruby process, the resulting code output has very
little noise.

You can find the original code that he wrote right here.

The only thing I’ve changed is the variable jw-eval-buffer-commands
and instead I've created jedcn-eval-buffer-commands just because I do
not have xruby.

(defconst jedcn-eval-buffer-commands

>(("js" . "/usr/local/bin/node")
("rb" . "ruby")
("coffee" . "/usr/local/bin/coffee")
("clj" . "/Users/jim/local/bin/clojure")
("py" . "/usr/bin/python")))

(defconst jw-eval-buffer-name "*EVALBUFFER*")

(defun jw-eval-buffer ()
"Evaluate the current buffer and display the result in a buffer."
(interactive)
(save-buffer)
(let* ((file-name (buffer-file-name (current-buffer)))
(file-extension (file-name-extension file-name))
(buffer-eval-command-pair (assoc file-extension jedcn-eval-buffer-commands)))
(if buffer-eval-command-pair
(let ((command (concat (cdr buffer-eval-command-pair) " " file-name)))
(shell-command-on-region (point-min) (point-max) command jw-eval-buffer-name
(pop-to-buffer jw-eval-buffer-name)
(other-window 1)
(jw-eval-buffer-pretty-up-errors jw-eval-buffer-name)
(message ".."))
(message "Unknown buffer type"))))

20

https://github.com/jimweirich/emacs-setup-esk/blob/master/eval-buffer.el

(defun jw-eval-buffer-pretty-up-errors (buffer)
"Fix up the buffer to highlight the error message (if it contains one)."
(save-excursion
(set-buffer buffer)
(goto-char (point-min))
(let ((pos (search-forward-regexp "\\.rb:[0-9]+:\\(in.+:\\)? +" (point-max) t)))
(if pos (progn
(goto-char pos)
(insert-string "\n\n")
(end-of-1line)
(insert-string "\n"))))))

(defun jw-clear-eval-buffer ()
(interactive)
(save-excursion
(set-buffer jw-eval-buffer-name)
(kill-region (point-min) (point-max))))

(defun jw-eval-or-clear-buffer (m)
(interactive "P")
(cond ((null n) (jw-eval-buffer))
(t (jw-clear-eval-buffer))))

8 Appendix A: Installation Details

This appendix covers both how I install Emacs on MacOS and how I get up
and running with emacs-setup.

8.1 FEmacs Installation

On MacOS T install Emacs using Homebrew. I run the following at my shell
prompt:

brew install emacs --cocoa

This takes some time to complete, and when finished I take another step
to make Emacs appear as one of my Applications:

1n -s /usr/local/Cellar/emacs/24.3/Emacs.app /Applications

Now I can start emacs by selecting it graphically in the Applications
area.

21

http://brew.sh/

8.2 Using emacs-setup

Once I have Emacs 244 running, I use git to clone my emacs-setup to my
machine, cd into the cloned directory, and source the file install.sh:

git clone https://github.com/jedcn/emacs-setup.git
cd emacs-setup
source install.sh

The contents of the install.sh file achieve the following:

e They allow you to supply a HOME and will create an .emacs.d if needed.
e They create alink within this .emacs.d back to the cloned emacs-setup.

e They create a single line of elisp that loads up the composite
emacs-setup.el.

emacs_setup_dir=‘pwd*

echo "Creating $HOME/.emacs.d (if needed)"
mkdir -p $HOME/.emacs.d

echo "Creating $HOME/.emacs.d/emacs-setup as link to $emacs_setup_dir"
1n -s $emacs_setup_dir $HOME/.emacs.d/emacs-setup

echo "Creating $HOME/.emacs.d/init.el"
echo ’(load (concat user-emacs-directory "emacs-setup/emacs-setup.el"))’ >> $HOME/.ema

It is important to note that HOME can be given a temporary value and this
lets me test my installation process. I can get a fresh copy of emacs-setup
and clone it into a temporary directory, and then I can run the install.sh
with a temporary value of HOME like so:

mkdir /tmp/emacs-setup && cd /tmp/emacs-setup
git clone https://github.com/jedcn/emacs-setup.git .

mkdir /tmp/emacs-home

HOME=/tmp/emacs-home source install.sh
HOME=/tmp/emacs-home /Applications/Emacs.app/Contents/Mac0S/Emacs &

22

9 Appendix B: Babel and the Config

My configuration is stored as several .org files. This is done to optimize for
editing and the production of documentation (via org-export). However,
emacs does not read these .org files and instead it reads a single elisp file,
emacs-setup.el

How is a single elisp file generated from several .org files? The .org
files are concatenated together in a specific order to create a composite .org
file named emacs-setup.org. This composite file can be used to generate
emacs-setup.el, and it can also generate complete documentation in various
formats: HTML or WIEX/PDF.

Emacs has built in support for extracting and loading elisp within .org
files via org-babel-load-file. Why not just use this on each .org file indi-
vidually rather than orchestrating a process by which they are concatenated
into a single, larger document? I want to focus on woven documentation.
Why not just operate on just a larger .org file? [want to work towards
modularity. Putting these two concepts together, I think of each .org file as
a stand-alone entity that is both chapter in a larger story and section in a
larger program.

The remainder of this appendix details how this orchestration works.
All of the functions and variables in this section begin with jedcn-es/ to
indicate their logical association with my (jedcn) emacs setup (es).

9.1 Composite File

The name of the composite .org file is emacs-setup.org, and its location is
stored for future reference in composite-org.

(setq jedcn-es/composite-org (concat
jedcn-es/dir
"/emacs-setup.org"))

9.2 Component Files
The list of files that will be included in the is stored in files. Order is

significant. These files are presumed to be within files-dir.

(setq jedcn-es/files-dir (concat
jedcn-es/dir
"/org"))

23

(setq jedcn-es/files ’("introduction.org"
"general-setup.org"
"personal-information.org"
"key-bindings.org"
"behaviors.org"
"modes.org"
"various-and-sundry.org"
"appendix-a.org"
"appendix-b.org"))

9.3 Concatenation

The composite file is created with create-composite-org, which in turn
relies on concat-files, files-dir, and files, and composite-org.

(defun jedcn-es/concat-files (the-files target-file)
"Concatenate a list of THE-FILES into a TARGET-FILE"
(let* ((original-buffer (current-buffer))

(result-file target-file)
(files the-files)
(file (car files)))
55 do..
(find-file file)
(write-region (point-min) (point-max) result-file)
(setq files (cdr files))
(setq file (car files))
;; while
(while files
(find-file file)
(write-region (point-min) (point-max) result-file t)
(setq files (cdr files))
(setq file (car files)))
(switch-to-buffer original-buffer)))

(defun jedcn-es/create-composite-org ()
"Create a composite org file based on my list of config files"
(jedcn-es/concat-files
(mapcar (lambda (file)
(concat jedcn-es/files-dir "/" file))
jedcn-es/files)

24

gc

"sofued Jsoye] oY) Mo £13 0}
peOTOI-pUR-PTINGaI/So-udpel X-| ua) pue ‘soyj 810" AW YjIM punore [00J ued
1 98} sueow ST} ‘0o190rId U] "OATJORIOJUI 9XRUW | UOTIOUTL] ATUO 91} ST ST T,

((Teo-9o3tsodwoo-peo1/sa-uopal)

(810-93180dwon-aT3ues/S8-udpal)

(810-931150dWoOD-99®810 /s9-u0Pal)

(9AT2O®ISAUT)

.PeoTox pue ‘dsSTe 8ya 30BIFXS ‘STTF Jx0° s3rTsodwod oyl plINgsy,
() peoTeI-pue-pTINgeI/se-uopsl ungep)

‘peOTI-pUR-PTINGaI/So-uopal
IIA JJNSOI 9] PRO[USI] PUR ‘41 o[due) uay) ‘seosld jueuodurod syr uIolf
o[y 810" 9y1sodwod oY) Jo uoryesId oYy dn opung ued om ‘yoeq Furddslg

((T9-931sodwoo /se-udpal STTI-peoT)
() To-9atsodwoo-peoT/se-uopal ungep)

1o 31 A13 pue dn 31 peo[09 st dojs [edo130[}xoU oY], ‘Te-83Ts0dwod
Je FUIPISAIl }[NSoI PO[SUR) oY)} 9ARY [am ‘Paje(duIod sey ST} USYAA

((T®-931sodmoo /se-uopal S10-s11sodwod/se-uopal sTTI-oTSuel-Toqeq-310)
() 8i0-931sodwoo-sT8uey/se-uopal ungep)

SMO[[O] SB dA0(R PaqLIDSOpP ss9001d oY) OJUI OO URD oM puUe
‘eTTI-oT3uRL-Toqeq-3.I0 powWeU UOIIDUN] © 1M UOI)IRI)XS 9p0d syroddns pqey

((.,To dnyes-soews/, Itp/se-uopsl geouod) Te-sarsodwmod/se-uopal baes)
"To-93tsodwod ojur 41 9ov[d pue 310-s31sodwod WOIJ

dstpe oY) jorI)XD 0) WIR [[OA\ "92INOS PIjeIouUR SIT WOIJ dP0d 92anos arnd
JO UOIPORIJXD 91} 9(LIISOP 0} ,SUIue), qIoa oY) sosn Jurmumrerdord ojerolry

dsijo Surnpenxy #°6

((8x0-931s0dwod /sa-uopsal

	Overview
	Background: Literate Programming in Emacs
	An Emacs Configuration

	General
	Package Repository
	PATH
	UTF-8
	Start Server
	Save Place
	Appearance

	Personal Information
	Key Bindings
	See Occurrences while Searching
	Running Methods
	Text Size
	Goto Line
	Magit
	MacOS's ``Command''
	Movement

	Behaviors
	Miscellaneous
	Whitespace Cleanup
	Yes or No?
	Autofill
	Display Column Numbers when Programming
	Highlight Current Line when Programming
	Use instead of lambda

	Modes and Packages
	General Package Listing
	Ruby Packages
	Magit
	yasnippet
	org-mode

	Various and Sundry
	Jim Weirich's eval-buffer

	Appendix A: Installation Details
	Emacs Installation
	Using emacs-setup

	Appendix B: Babel and the Config
	Composite File
	Component Files
	Concatenation
	Extracting elisp

